Выход
Вход/Login
 
E-mail
Пароль/Password
Забыли пароль?
Введите E-mail и жмите тут. Пароль будет выслан на указанный адрес
Войти (LogIn)

 

Если вы первый раз здесь, то зарегистрируйтесь

Регистрация/Sign Up
Полное имя (Ф И О)/Full name
E-mail
Телефон/Phone
Зарегистрироваться,
на ваш E-mail будет выслан временный пароль

Нажимая кнопку Зарегистрироваться, вы соглашаетесь с Правилами сайта и Политикой Конфиденциальности http://vidar.ru/rules.asp

 

Медицинская литература. Новинки


 

 

 

 

 

 
вce журналы << Медицинская визуализация << 2015 год << №1 <<
стр.83
отметить
статью

Сравнительная характеристика радиофармацевтических препаратов для визуализации воспалительных и инфекционных процессов методом эмиссионной томографии

Лунёв А. С., Лысенко Н. П., Петросова К. А.
Вы можете загрузить полный текст статьи в формате pdf
Лунёв Александр Сергеевич - аспирант кафедры радиобиологии и вирусологии, ФГБОУ ВПО” Московская государственная академия ветеринарной медицины и биотехнологии им. К.И. Скрябина”, l5h33@rambler.ru, Москва, Россия
Лысенко Николай Петрович - доктор биол. наук, заведующий кафедрой радиобиологии и вирусологии, ФГБОУ ВПО” Московская государственная академия ветеринарной медицины и биотехнологии им. К.И. Скрябина”, Москва, Россия
Петросова Кристина Андреевна - инженер отдела радиационных технологий в ядерной медицине, ФГБУ ГНЦ “Федеральный медицинский биофизический центр им. А.И. Бурназяна” ФМБА России, Москва, Россия

Визуализация и радионуклидная диагностика воспалительных и инфекционных процессов методами эмиссионной томографии, основывающейся на локальных физико-химических изменениях в пораженной ткани, позволяет отразить функциональный статус патологии, тогда как другие современные методы визуализации (КТ, МРТ, УЗИ) опираются на морфологические изменения в тканях, что лишает возможности оценить патологию на ранней стадии развития. К сожалению, на сегодняшний день нет “идеального” радиофармпрепарата, отвечающего определенным критериям, поэтому многолетний мировой опыт использования меченых агентов для визуализации воспалений и их конкретные позитивные результаты явились основанием в предоставлении достаточного количества препаратов для независимого выбора применения того или иного агента.

Ключевые слова:
радиофармпрепарат, визуализация, воспаление, инфекция, radiopharmaceutical, imaging, inflammation, infection

Литература:
1.Stephenson T.J. Inflammation. General and systematic pathology; Ed. J.C.E. Elsevier. London: Underwood, 2004. 202-220.
2.Boerman O.C., Dams E.T.M., Oyen W.J.G. et al. Radiopharmaceuticals for scintigraphic imaging of infection and inflammation. Inflamm. Res. 2001; 50: 55-64.
3.Cortens F.H.M., van der Meer J.W.M. Nuclear medicine''s role in infection and inflammation. Lancet. 1999; 354 (28): 765-770.
4.Phelps M.E. Positron emission tomography provides molecular imaging of biological processes. Proc. Natl. Acad. Sci. USA. 2000; 97: 9226-9231.
5.Bloomfield P.M., Rajeswaran S., Spinks T.J. et al. The design and physical characteristics of a small animal positron emission tomograph. Phys. Med. Biol. 1995; 40: 1105-1126.
6.Barrett J.A., Cheesman E.H., Harris T.D. et al. Radiopharmaceuticals for imaging infection and inflammation. US 6416733. 1998.
7.Laverman P., Bleeker-Rovers C.P., Corstens F.H.M. et al. Development of Infection and Inflammation Targeting Compounds. Curr. Radiopharm. 2008; 1: 42-48.
8.Варламова Н.В., Скуридин В.С., Сазонова С.И. Получение и медико-биологические испытания меченного технецием-99m норфлоксацина гидрохлорида. Бюллетень сибирской медицины. 2010; 6: 108-116.
9.Rennen H.J.J., Boerman O.C., Oyen W.J.G., Corstens F.H.M. Scintigraphic Imaging of Inflammatory Processes. Curr. Med. Chem. 2002; 1: 63-75.
10.Завадовская В.Д., Килина О.Ю., Куражов А.П. и др. Сцинтиграфия с таллием-199-хлоридом в выявлении воспалительных заболеваний опорно-двигательного аппарата. Медицинская визуализация. 2003; 3: 102-105.
11.Завадовская В.Д., Килина О.Ю., Синилкин И.Г. и др. Сцинтиграфическая диагностика остеомиелита. Медицинская радиология и радиационная безопасность. 2004; 49 (1): 63-70.
12.Завадовская В.Д., Килина О.Ю., Дамбаев Г.Ц. Радионуклидные методы исследования в диагностике хронического остеомиелита. Медицинская радиология и радиационная безопасность. 2007; 52 (3): 54-60.
13.Сазонова С.И., Лишманов Ю.Б. Радиофармпрепараты для сцинтиграфической визуализации очагов воспаления. Медицинская радиология и радиационная безопасность. 2007; 52 (4): 73-82.
14.Завадовская В.Д., Зоркальцев М.А., Килина О.Ю. и др. Сравнение возможностей трехфазной сцинтиграфии и сцинтиграфии с мечеными лейкоцитами в диагностике остеомиелита у пациентов с синдромом диабетической стопы. Радиология-практика. 2012; 1: 4-12.
15.Сазонова С.И., Варламова Н.В., Лишманов Ю.Б. Использование меченных 99mTc антибактериальных препаратов для сцинтиграфической диагностики инфекционного воспаления. Российский медицинский журнал. 2013; 2: 39-42.
16.Rubin R.H., Young L.S., Hansen W.P. et al. Specific and nonspecific imaging of localized Fisher immunotype 1 Pseudomonas aeruginosa infection with radiolabeled monoclonal antibody. J. Nucl. Med. 1988; 29 (5): 651-656.
17.Fischman A.J., Rubin R.H., White J.A. et al. Localization of Fc and Fab fragments of nonspecific polyclonal IgG at focal sites of inflammation. J. Nucl. Med. 1990; 31 (7): 1199-1205.
18.Morrel E.M., Tompkins R.G., Fischman A.J. et al. Imaging infections with antibodies. A quantitative autoradiographic analysis. J. Immunol. Meth. 1990; 130: 39-48.
19.Fischman A.J., Fucello A.J., Pellegrino-Gensey J.L. et al. Effect of carbohydrate modification on the localization of human polyclonal IgG at focal sites of bacterial infection. J. Nucl. Med. 1992; 33 (7): 1378-1382.
20.Dams E.T.M., Oyen W.J.G., Boerman O.C. et al. Technetium-99m labeled tohuman immunoglobulin G through the nicotinyl hydrazine derivative: a clinical study. J. Nucl. Med. 1998; 39 (1): 119-124.
21.Oyen W.J.G., Claessens R.A., van der Meer J.W.M. et al. Indium-111-labeled human nonspecific immunoglobulin G: a new radiopharmaceutical for imaging infectious and inflammatory foci. Clin. Infect. Dis. 1992; 14: 1110-1118.
22.Buscombe J.R., Oyen W.J.G., Grant A. et al. Indium-111-labeled human polyclonal immunoglobulin: identifying focal infection in patients positive for human immunodeficiency virus (HIV). J. Nucl. Med. 1993; 34 (10): 1621-1625.
23.Mairal L., Lima P.D., Martin C.J. et al. Simultaneous administration of 111In-human immunoglobulin and 99mTc-HMPAO labelled leukocytes in inflammatory bowel disease. Eur. J. Nucl. Med. 1995; 22: 664-670.
24.Nijhof M.W., Oyen W.J.G., van Kampen A. et al. Evaluation of infections of the locomotor system with indium-111-labeled human IgG scintigraphy. J. Nucl. Med. 1997; 38 (8): 1300-1305.
25.Dams E.T.M., Corstens F.H.M. Lessons for medicine and nuclear medicine research. Eur. J. Nucl. Med. 1999; 26: 311-313.
26.Boerman O.C., Storm G., Oyen W.J.G. et al. Sterically stabilized liposomes labeled with Indium-111 to image focal infection. J. Nucl. Med. 1995; 36 (9): 1639-1644.
27.Laverman P., Dams E.T.M., Oyen, W.J.G. et al. A novel method to label liposomes with 99mTc by the hydrazine nicotinyl derivative. J. Nucl. Med. 1999; 40 (1): 192-197.
28.Dams E.T.M., Oyen W.J.G., Boerman, O.C. et al. 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. J. Nucl. Med. 2000; 41 (4): 622-630.
29.Brouwers A.H., de Jong D.J., Dams E.T.M. et al. Tc-99m-PEG-liposomes for the evaluation of colitis in Crohn''s disease. J. Drug Targeting. 2000; 8 (4): 225-233.
30.Davina K. Hughes Nuclear Medicine and Infection Detection: The Relative Effectiveness of Imaging with 111In-Oxine-, 99mTc-HMPAO-, and 99mTc-Stannous Fluoride Colloid-Labeled Leukocytes and with 67Ga-Citrate. J. Nucl. Med. Technol. 2003; 31: 196-201.
31.Datz F.L., Thorne D.A. Effect of chronicity of infection on the sensitivity of the In-111-labeled leukocyte scan. Am. J. Roentgenol. 1986; 147: 809-812.
32.Datz F.L. Indium-111-labeled leukocytes for the detection of infection: current status. Semin. Nucl. Med. 1994; 24: 92-109.
33.Mc Afee J.G., Thakur M.L. Survey of radioactive agents for the in vitro labeling of phagocytic leucocytes. I Soluble agents. II Particles. J. Nucl. Med. 1976; 17(6): 480-492.
34.Peters A.M., Osman S., Henderson B.L. et al. Clinical experience with 99mTc-hexamethylpropilene-amineoxime for labeling leucocytes and imaging inflammation. Lancet. 1986; 198: 946-949.
35.Vinjamuri S., Hall A.V., Solanki K.K. et al. Comparison of 99mTc-Infecton imaging with radiolabelled white-cell imaging in the evaluation of bacterial infection. Lancet. 1996; 347: 233-235.
36.Britton K., Vinjamuri S., Hall A.V. et al. Clinical evaluation of 99ТТС infecton for the localization of bacterial infection. Eur. J. Nucl. Med. 1997; 24: 553-556.
37.Hall A.V., Solanki K.K., Vinjamuri S. et al. Evaluation of the efficacy of 99mTc-Infecton, a novel agent detecting sites of infection. J. Clin. Pathol. 1998; 51: 215-219.
38.Bennink R., Peeters M., D''Haens G. et al. Tc-99m HMPAO white blood cell scintigraphy in the assessment of the extent and severity of an acute exacerbation of ulcerative colitis. Clin. Nucl. Med., 2001; 26: 99-104.
39.Lange J.M.A., Boucher C.A.B., Hollak C.E.M. et al. Failure of zidovudine prophylaxis after accidental exposure to HIV-1. N. Eng. J. Med. 1990; 323: 915-916.
40.Becker W., Saptogino A., Wolf F The single late Tc-99m granulocyte antibody scan in inflammatory diseases. Nucl. Med. Commun. 1992; 13: 186-192.
41.Hasler P.H., Novak-Hofer I., Blauenstein P., Schubiger P.A. The in vivo binding behaviour of an I-123 labelled antigranulocytes antibody (Granuloszint). Prog. Clin. Biol. Res. 1990; 355: 299-309.
42.Barron B., Hanna C., Passalaqua A.M. et al. Rapid diagnostic imaging of acute, nonclassic appendicitis by leukoscintigraphy with sulesomab, a technetium-99m- labeled antigranulocyte antibody Fab''fragment. Surgery. 1999; 125: 288-296.
43.Thakur M.L., Marcus C.S., Henneman P. et al. Imaging inflammatory diseases with neutrophil-specific technetium-99m-labeled monoclonal antibody anti-SSEA-1. J. Nucl. Med. 1996; 37 (11): 1789-1795.
44.Kipper S.L., Rypins E.B., Evans D.G. et al. Neutrophil-specific 99mTc-labeled anti-CD15 monoclonal antibody imaging for diagnosis of equivocal appendicitis. J. Nucl. Med. 2000; 41 (3): 449-455.
45.Becker W., Borst U., Fischbach W. et al. Kinetic data of in vivo labeled granulocytes in humans with a murine Tc-99m-labelled monoclonal antibody. Eur. J. Nucl. Med. 1989; 15: 361-366.
46.Becker W., Goldenberg D.M., Wolf F The use of monoclonal antibodies and antibody fragments in the imaging of infectious lesions. Semin. Nucl. Med. 1994; 24 (2): 142-153.
47.Papos M., Nagy F., Narai G. et al. Anti-granulocyte immunoscintigraphy and [99mTc]hexamethylpropyleneamine-oxime-labeled leukocyte scintigraphy in inflammatory bowel disease. Dig. Dis. Sci. 1996; 41: 412-420.
48.Segarra I., Roca M., Baliellas L. et al. Granulocyte-specific monoclonal antibody technetium-99m-BW 250/183 and indium-111 oxine-labelled leukocyte scintigraphy in inflammatory bowel disease. Eur. J. Nucl. Med. 1991; 18: 715-719.
49.Fischman A.J., Pike M.C., Kroon D. et al. Imaging focal sites of bacterial infection in rats with indium-111-labeled chemotactic peptid analogs. J. Nucl. Med. 1991; 32 (3): 483-491.
50.Babich J.W., Graham W., Barrow S.A. et al. Technetium-99m-labeled chemotactic peptides: comparison with indium 111-labeled white blood cells for localizing acute bacterial infection in the rabbit. J. Nucl. Med. 1993; 34 (12): 2176-2181.
51.Fischman A.J., Rauh D., Solomon H. et al. In vivo bioactivity and biodistribution of chemotactic peptide analogs in nonhuman primates. J. Nucl. Med. 1993; 34 (12): 2130-2134.
52.Pollak A., Goodbody A.E., Ballinger J.R. Imaging inflammation with 99mTc-labelled chemotactic peptides: analogues with reduced neutropenia. Nucl. Med. Commun. 1996; 17: 132-135.
53.Toda A., Yokomizo T., Shimizu T. Leukotriene B4 receptors. Prostaglandins Other Lipid Mediat. 2002; 68 (69): 575-585.
54.Kontoyiannis D.P., Bodey G.P. Invasive aspergillosis in 2002: an update. Eur. J. Clin. Microbiol. Infect. Dis. 2002; 21: 161-172.
55.van Eerd J.E.M., Rennen H.J.J., Oyen W.J.G. et al. Scintigraphic Detection of Pulmonary Aspergillosis in Rabbits with a Radiolabeled Leukotriene B4 Antagonist. J. Nucl. Med. 2004; 45 (10): 1747-1753.
56.van der Laken C.J., Boerman O.C., Oyen W.J.G., van de Ven M.T.P. et al. Imaging of infection in rabbits with radioiodinated interleukin-1 (a and b), its receptor antagonist and a chemotactic peptide: a comparative study. Eur. J. Nucl. Med. 1998; 25: 347-352.
57.Gross M.D., Shapiro B., Fig L.M. et al. Imaging of human infection with 131l-labeled recombinant human interleukin-8. J. Nucl. Med. 2001; 42 (11): 1656-1659.
58.Bleeker-Rovers C.P., Rennen H.J., Boerman O.C. et al. 99mTc-labeled interleukin 8 for the scintigraphic detection of infection and inflammation: first clinical evaluation. J. Nucl. Med. 2007; 48 (3): 337-343.
59.Bounds S.J., Walters J.D., Nakkulka R.J. Fluoroquinolone transport by human monocytes: characterization and 74. comparison to other cells of myeloid lineage. Antimicrob. Agents Chemother. 2000; 44: 2609-2614.
60.Britton K.E., Wareham D.W., Das S.S. et al. Imaging bacterial infection with 99mTc-ciprofloxacin (Infection). J. Clin. Pathol. 2002; 55 (9): 817-823.
61.Durack D.T., Lukes A.S., Bright D.K. et al. New criteria for diagnosis of infective endocarditis: utilization of specific echocardiographic findings. Am. J. Med. 1994; 96: 200-209.
62.Sonmezoglu K., Sonmezoglu M., Halac M. et al. Usefulness of 99mTc-ciprofloxacin (Infection) scan in diagnosis of chronic orthopedic infections: comparative study with 78. 99mTc-HMPAO leukocyte scintigraphy. J. Nucl. Med., 2001; 42 (4): 567-574.
63.Fischman A.J., Livni E., Babich J.W. et al. Pharmacokinetics of [18F]Fleroxacin in patients with acute exacerbations of chronic bronchitis and complicated urinary tract infection studied by positron emission tomography. Antimicrob. Agents Chemother. 1996; 40 (3): 659-664.
64.Sugawara Y., Braun D.K., Kison P.V. et al. Rapid detection of human infections with fluorine-18 fluorinedeoxyglucose and positron emission tomography: preliminary results. Eur. J. Nucl. Med. 1998; 25 (9): 1238-1243. 82.
65.Sugawara Y., Gutowski T.D., Fisher S.J. et al. Uptake of positron emission tomography tracers in experimental bacterial infections: a comparative biodistribution study of radiolabeled FDG, thymidine, L-methionine, 67Ga-citrate and 125I-HSA. Eur. J. Nucl. Med. 1999; 26 (4): 333-341.
66.Mortelmans J., De Caestecker J., Maes A. et al. Diagnostic role of whole body FDG PET in patients with fever of unknown origin (FUO). J. Nucl. Med. 1990; 40 (Suppl. 5): 201.
67.Yamada S., Kubota K., Kubota R. et al. High accumulation of fluorine-18-fluorodeoxyglycose in turpentine-induced inflammatory tissue. J. Nucl. Med. 1995; 36 (7): 1301-1306.
68.Pellegrino D., Bonab A.A., Dragotakes S.C. et al. Inflammation and Infection: Imaging properties of 18F-FDG-labeled white blood cells versus 18F-FDG. J. Nucl. Med. 2005; 46 (9): 1522-1530.
69.Guhlmann A., Brecht K.D., Suger G. et al. Fluorine-18- FDG PET and technetium-99m antigranulocyte scintigraphy in chronic osteomyelitis. J. Nucl. Med. 1998; 39 (12): 2145-2152.
70.Palestro C.J. The current role of gallium imaging in infection. Semin. Nucl. Med. 1994; 24: 128-141.
71.Lavender J.P., Lowe J., Barker J.R. et al. Gallium 67 citrate scanning in neoplastic and inflammatory lesions. Br. J. Radiol. 1971; 44: 361-366.
72.Ito Y., Okuyama S., Awano T. et al. Diagnostic evaluation of Ga-67 scanning of lung cancer and other diseases. Radiology. 1971; 101: 355-362.
73.Куражов А.П., Завадовская В.Д., Чойнзонов Е.Л. и др. Возможности использования неспецифичных туморотропных индикаторов 99mTc-МИБИ, 67Ga-цитрата и 199Tl-хлорида для дифференциальной диагностики злокачественных опухолей. Сибирский онкологический журнал. 2012; 5 (53): 5-11.
74.Staab E.V., McCartney W.H. Role of Gallium 67 in inflammatory disease. Semin. Nucl. Med. 1978; 8: 219-234.
75.Bartholoma D., Louie A.S., Valliant J.F., Zubieta J. Technetium and Gallium Derived Radiopharmaceuticals: Comparing and Contrasting the Chemistry of Two Important Radiometals for the Molecular Imaging Era. Chem. Rev. 2010; 110: 2903-2920.
76.Green M.A., Welch M.J. Gallium radiopharmaceutical chemistry. Int. J. Rad. Appl. Instrum. 1989; 16: 435-438.
77.Harris W.R., Pecoraro V.L. Thermodynamic binding constants for gallium transferrin. Biochem J. 1983; 22: 292-299.
78.Martinez J.L., Delgado-Iribarren A., Baquero F. Mechanisms of iron acquisition and bacterial virulence. FEMS Microbiol. Rev. 1990; 75: 45-56.
79.Moerlein S.M., Welch M.J. The chemistry of gallium and indium as related to radiopharmaceutical production. Int. J. Nucl. Med. Biol. 1981; 8: 277-287.
80.Hartman R.E., Hayes R.L. The binding of gallium by blood serum. J. Pharmacol. Exp. Ther. 1969; 168: 193-198.
81.Gunasekera S.W., King L.J., Lavender P.J. The behavior of tracer gallium-67 towards serum proteins. Clin. Chim. Acta. 1972; 39: 401-406.
82.Наrа T. On the binding of gallium to transferrin. Int. J. Nucl. Med. Biol. 1974; 1: 152-154.
83.Larson S.M., Allen D.R., Rasey J.S., Grunbaum Z. Kinetics of binding of carrier-free Ga-67 to human transferrin. J. Nucl. Med. 1978; 19 (11): 1245-1249.
84.Hoffer R. Gallium: mechanisms. J. Nucl. Med. 1980; 21 (3): 282-285.
85.Vallabhajosula S.R., Harwig J.F., Siemsen J.K., Wolf W. Radio gallium localization in tumors: blood binding and transport and the role of transferrin. J. Nucl. Med. 1980; 21 (5): 650-656.
86.Larson S.M., Rasey J.S., Allen D.R., Nelson N.J. A transferrin-mediated uptake of gallium-67 by EMT-6 sarcoma. I. Studies in tissue culture. J. Nucl. Med. 1979; 20 (8): 837-842.
87.Gelrud L.G., Arsenau J.C., Milder M.S. The kinetics of 67Ga incorporation into inflammatory lesions: experimental and clinical studies. J. Lab. Clin. Med. 1974; 83: 489-495.
88.Ando A., Nitta K., Ando I. et al. Mechanism of gallium 67 accumulation in inflammatory tissue. Eur. J. Nucl. Med. 1990; 17: 21-27.
89.Weiner R., Hoffer P.B., Thakur M.L. Lactoferrin: Its role as a Ga-67 binding protein in polymorphonuclear leukocytes. J. Nucl. Med. 1981; 22 (1): 32-37.
90.Bernstein L.R. Mechanisms of therapeutic activity for gallium. Pharmacol. Rev. 1998; 50: 665-682.
91.Love C., Palestro C.J. Radionuclide Imaging of Infection. J. Nucl. Med. Technol. 2004; 32: 47-57.
92.Tsan M.F. Mechanism of gallium-67 accumulation in inflammatory lesions. J. Nucl. Med. 1985; 26 (1): 88-92.
93.Weiner R. The role of transferrin and other receptors in the mechanism of 67Ga localization. Int. J. Rad. Appl. Instrum. 1990; 17: 141-149.
94.Audi G., Bersillon O., Blachot J.A. et al. The Nubase evaluation of nuclear and decay properties. Nucl. Phys. A. 2003; 729 (1): 3-128.
95.Hayes R.L., Byrd B.L., Rafter J., Carlton J.E. The Effect of Scandium on the Tissue Distribution of Ga-67 in Normal and Tumor-Bearing Rodents. J. Nucl. Med. 1980; 21 (4): 361-365.
96.Hayes R.L., Edwards C.L. The Effect of Stable Scandium on Red Blood Cells and on the Retention and Excretion of 67Ga in Humans. South. Med. J. 1973; 66 (12): 1339-1340.
97.Bruner H.D., Hayes R.L., Perkinson J.D. A study of gallium-72-X. Preliminary data on gallium-67. Radiology. 1953; 61: 602-603.
98.Kriegel H. Biokinetics and metabolism of radio gallium. Nucl. Med. 1984; 23: 53-57.
99.Oster Z.H., Som P., Sacker D.F., Atkins H.L. The Effects of Deferoxamine Mesylate on Gallium-67 Distribution in Normal and Abscess-Bearing Animals: Concise Communication. J. Nucl. Med. 1980; 21(5): 421-425.

Comparative Analysis of Radiopharmaceuticals for Imaging of Inflammation and Infection using Emission Tomography

Lunyov A. S., Lysenko N. P., Petrosova K. A.

Emission imaging and radionuclide diagnostics of inflammation and infection are based on local physical and chemical changes of affected tissue. Emission imaging allows demonstrating functional status of pathology while other modern methods (CT, USG and MRI) are based on morphological changes. Imaging using radiopharmaceutical allows estimating foci of early development stage. Unfortunately, nowadays there is no “ideal” radiopharmaceutical (fast accumulation in inflammation, fast excretion, low toxicity, discrimination between inflammation and infection, low cost). Therefore, the world experience of radiopharmaceutical using for inflammation imaging and their positive results were providing foundation of sufficient number of radiopharmaceuticals for independent select of using different labeled agents.

Keywords:
радиофармпрепарат, визуализация, воспаление, инфекция, radiopharmaceutical, imaging, inflammation, infection

Новости   Магазин   Журналы   Контакты   Правила   Доставка   О компании  
ООО Издательский дом ВИДАР-М, 2024